Functional co-evolutionary study of glucosamine-6-phosphate synthase in mycoses causing fungi

نویسندگان

  • Kamalika Banerjee
  • Utkarsh Gupta
  • Sanjay Gupta
  • Sanjeev Kumar Sharma
  • Chakresh Kumar Jain
چکیده

Invasive fungal opportunistic infections or mycoses have been on the rise with increase in the number of immuno-compromised patients accounting for associated high morbidity and mortality rates. The antifungal drugs are not completely effective due to increased resistance and varied susceptibility of fungi. Hence, the functional diversification study of novel targets has to be carried out. The enzyme glucosamine-6-phosphate synthase [EC 2.6.1.16], a novel drug target, catalyzes the rate-limiting step of the fungal cell-wall biosynthetic pathway, comprising four conserved domains, two glutaminase and sugar-isomerising (SIS) domains with active site. The amino acids within these domains tend to mutate simultaneously and exert mutual selective forces which might result in untoward fungal adaptations that are fixed through random genetic drift over time. The current study is an attempt to investigate such 'non-independent' coevolving residues which play critical functional and structural role in the protein. Residues with Shannon entropy ≦1 (calculated by the Protein Variability Server) were considered and subsequently, positional correlations were estimated by InterMap3D 1.3 server. It was observed that majority of coevolving pairs of first SIS domain involved interactions with hydrophobic leucine and found to be spatially coupled in 3-dimensional structure of the enzyme. The coevolving groups of Aspergillus niger and Rhizopus oryzae species might play a role in drug resistance. Such coevolutionary analysis is important for understanding the receptor-ligand interactions and effective drug designing.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Variability analyses of functional domains within glucosamine-6-phosphate synthase of mycosescausing fungi

The immunosuppressive individuals are highly prone to get afflicted with invasive opportunistic fungal infections such as Candidiasis, Aspergillosis, Histoplasmosis, Coccidioidomycosis, Blastomycosis, Penicilliosis, Cryptococcosis and Zygomycosis which are becoming a cause of concern to the mankind due to their high morbidity and mortality rates. The existing antifungal agents are not completel...

متن کامل

Vanadate Influence on Metabolism of Sugar Phosphates in Fungus Phycomyces blakesleeanus

The biological and chemical basis of vanadium action in fungi is relatively poorly understood. In the present study, we investigate the influence of vanadate (V5+) on phosphate metabolism of Phycomyces blakesleeanus. Addition of V5+ caused increase of sugar phosphates signal intensities in 31P NMR spectra in vivo. HPLC analysis of mycelial phosphate extracts demonstrated increased concentration...

متن کامل

Enzymes with molecular tunnels.

As a result of recent advances in molecular cloning, protein expression, and X-ray crystallography, it has now become feasible to examine complicated protein structures at high resolution. For those enzymes with multiple catalytic sites, a common theme is beginning to emerge; the existence of molecular tunnels that connect one active site with another. The apparent mechanistic advantages render...

متن کامل

Glucosamine-6-phosphate synthase, a novel target for antifungal agents. Molecular modelling studies in drug design.

Fungal infections are a growing problem in contemporary medicine, yet only a few antifungal agents are used in clinical practice. In our laboratory we proposed the enzyme L-glutamine: D-fructose-6-phosphate amidotransferase (EC 2.6.1.16) as a new target for antifungals. The structure of this enzyme consists of two domains, N-terminal and C-terminal ones, catalysing glutamine hydrolysis and suga...

متن کامل

Glucosamine 6-phosphate synthase of regenerating rat liver.

When rats were subjected to partial hepatectomy, glucosamine 6-phosphate synthase (EC 5.3.1.19) of the remaining liver underwent alterations both in activity and in molecular form. To study the molecular alterations, glucosamine 6-phosphate synthase was purified from regenerating as well as control liver and was analyzed by isoelectric focusing. Although control liver exhibited only one form of...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2011